Коррозия бетона – процесс разрушения элементов и конструкций из данного материала под воздействием на структуру монолита разнообразных внешних негативных факторов: агрессивных сред, физико-химических процессов, внутренних изменений. Изначально термин «коррозия» использовали исключительно касательно металлов, но потом само понятие стали применять и для других материалов, изделий.
Основное значение любой коррозии – это разрушение. И данному негативному процессу подвержены почти все строительные конструкции, на которые оказывается то или иное влияние. Наиболее разрушительны внешние факторы, но часто причиной коррозии становится и прохождение различных внутренних процессов.
Коррозия бетонных конструкций предполагает распад структуры монолита с потерей прочности и плотности, что приводит к утрате эксплуатационных свойств. Бетонные элементы разрушаются посредством расслоения, рассыпания цементного камня, так как обычно наполнители демонстрируют более высокую стойкость к агрессивным влияниям.
Экономические потери, связанные со снижением прочности и долговечности, ухудшением эксплуатационных характеристик сооружений, часто очень высоки, поэтому защита бетона от коррозии – актуальный вопрос во всех сферах, где используется данный материал. Благодаря превентивным мерам, своевременному выявлению факторов коррозии и изучению особенностей протеканий процессов удается значительно сократить финансовые потери и значительно повысить надежность, продлить срок службы разных конструкций, зданий, объектов.
Содержание
Виды коррозии
Коррозия бетона и железобетона – это разъедание строительных материалов под разрушающим воздействием химических, физических, биологических факторов при возникновении контактов с окружающей средой. Ввиду того, что в своем составе бетон имеет различные компоненты и цементный камень является наиболее уязвимым, он первым страдает от коррозийного процесса.
Виды вод, которые разрушают бетон: воды в трубах и траншеях, сточные, речные, грунтовые, морские. Самыми опасными считаются грунтовые воды, которые залегают возле промышленных предприятий, так как в них могут содержаться химические выбросы. Сточные воды также негативно влияют на материал из-за содержания химикатов. Воздействие газов можно включить в число опасных факторов.
Разрушения могут быть самыми разными и предполагать как воздействие на монолит извне, так и провоцировать изменение его структуры изнутри. При повышении влажности разъедание бетона ускоряется. Коррозировать может и арматура, расположенная внутри бетона, провоцируя разрушение железобетонных конструкций.
- Вымывание из цементного камня его компонентов.
- Негативное воздействие агрессивных веществ на монолит.
- Сочетание всех воздействий, которые меняют сам цементный камень.
- Химическая– происходит под воздействием атмосферных осадков, содержащегося в воздухе углекислого газа. Так появляется газовая коррозия, актуальная при повышенной влажности.
- Радиационная– зависит от величины ионизирующего излучения, объема цементного камня. Искажение кристаллической решетки минералов провоцирует расширение наполнителя, из-за чего появляются микротрещины, макротрещины, потом материал разрушается.
- Физико-химическая– ее причиной является замерзание воды, которая попадает в поры бетона жидкой, при минусе замерзает и расширяется, распирает конструкцию и провоцирует появление трещин.
- Биологическая– разъедается монолит под воздействием разнообразных биологических факторов (грибок, плесень, другие микроорганизмы).
Растворение составных частей цементного камня
Это разрушение происходит вследствие растворения (вымывания) компонентов цементного камня. На бетон воздействует вода и начинает растворяться гидроксид кальция, в процессе гидролиза появляется C3S и C2S, его объем растет и через 3 месяца занимает 10-15%, растворимость составляет 1.3 г/л.
Содержание гидроксида кальция из-за вымывания уменьшается до 1.1 г/л, распадаются гидросиликаты, разлагаются гидроалюминаты и гидроферриты кальция. Эти процессы провоцируют увеличение пористости материала, что означает и потерю прочности. Под воздействием воды (и особенно под давлением) процесс такой коррозии существенно ускоряется.
Но наиболее популярным методом борьбы с выщелачиванием гидроксида кальция традиционно считается применение плотных бетонов, в состав которых добавляют специальные компоненты, способствующие связыванию Са (ОН) в гидросиликат кальция, являющийся слаборастворимым соединением.
При взаимодействии цементного камня с содержащимися в воде кислотами
Этот тип коррозии можно наблюдать при влиянии на цементный монолит разных агрессивных веществ, в процессе соприкосновения с которыми появляется два типа соединений: аморфные массы и соли. Соли эти легко растворяются и вымываются водой. Аморфные массы практически не демонстрируют связующих свойств и бетон распадается под действием кислотной коррозии.
Кислотную коррозию можно наблюдать при воздействии любой кислоты, за исключением кремне-фтористо-водородной и поликремниевой. Опасные кислоты, взаимодействуя с гидроксидом кальция, способствуют созданию легкорастворимых солей СаС12 в том числе, что постоянно увеличивают размер CaSO4-2H2O. Это выглядит так: Са(ОН)2 + 2НС1 = СаС12 + 2Н2О Са(ОН)2 + H2SO4 = CaSO4.2H2O.
Под воздействием кислот разрушаются гидросиликаты, гидроалюминаты, гидроферриты, появляются легкорастворимые соли и иные аморфные массы. Защититься от слабых кислотных сред (на уровне pH = 4-6) можно с применением специального кислотостойкого материала (монолит окрашивают, покрывают пленкой и т.д.).
Есть еще углекислотная коррозия, которая относится к общему типу коррозии и появляется при влиянии на бетон воды с повышенным содержанием свободных диоксидов углерода в виде слабой углекислоты. Она разрушает созданную раньше карбонатную пленку, появляется бикарбонат кальция, который очень хорошо растворяется.
Бетон разрушается и под воздействием неорганических, органических кислот. Негативно воздействуют разные масла в составе с жирными кислотами (рыбий жир, льняное масло, к примеру). Нефть и нефтепродукты (масло, бензин, керосин) бетону не вредят, если в них нет остаточных кислот, но вовнутрь бетона они способны проникнуть легко.
Вследствие образования и кристаллизации в порах труднорастворимых веществ
При взаимодействии бетонного монолита с агрессивными средами появляются соединения большего размера в сравнении с теми, что были сформированы в бетоне изначально. Так появляется внутреннее напряжение внутри камня, который начинает трескаться под негативным воздействием. Это происходит сульфатная коррозия бетона.
Сульфатная коррозия имеет место из-за того, что в жидкой фазе цемента есть ионы кальция и гидроокисла, которые могут активно реагировать с агрессивной средой. Другие ионы обычно подавляются большим объемом извести. Катионы среды опасны, когда создают с ионами гидроокисла плохо растворимые соединения. Эти соединения провоцируют резкое понижение щелочности в бетонном монолите, растворение твердой извести, гидролиз силикатов и алюминатов (до этого проявляющих стойкость).
Сульфатные анионы создают с ионами кальция двуводный гипс, а в сочетании с высокоосновными алюминатами – гидросульфо-алюминат. Гипс и гидросульфо-алюминат имеют свойство кристаллизироваться и увеличиваться в объеме.
Когда такой процесс происходит в уже застывшем монолите, в структуре появляются большие внутренние напряжения. Бетон начинает покрываться трещинами или отслаиваться. Гидросульфоалюминат имеет свойство кристаллизоваться в виде игл, в связи с чем его называют «цементной бациллой».
Но так случается не всегда. Если гидросульфатоалюминат образуется в жидком бетоне или в растворе есть ионы хлора (они усиливают растворимость сульфоалюмината и алюминатов), напряжения могут не появляться. Так, сравнительно не опасна для бетона морская вода из-за содержания в ней большого объема сульфатов и большего объема хлорида.
Коррозия арматуры в бетоне
Железобетонные конструкции представляют собой залитый раствором каркас, выполненный из стальных прутьев или сетки. Арматура внутри бетона может ржаветь под воздействием хлора, сероводорода, сернистых газов, которые содержатся в воздухе.
В процессе реакции появляются продукты коррозии железа, которые провоцируют увеличение объема арматуры с появлением внутреннего напряжения, которое рано или поздно разрывает бетон (появляются трещины, отслоения).
К арматуре влага и воздух проходят через поры в цементном камне. Происходит это неравномерно из-за наличия на разных зонах поверхности разных потенциалов – так появляется электрохимическая коррозия, скорость прохождения которой зависит от пористости монолита, наличия трещин, влагопроницаемости. Если в воде есть растворенные вещества, коррозия арматуры проходит с увеличением концентрации электролита.
При долгом выдерживании бетона на свежем воздухе на всей поверхности монолита появляется тонкая (толщиной в 5-10 мкм) пленка, которая не растворяется в воде, не взаимодействует с сульфатами, защищает камень. Процесс формирования защитной пленки под влиянием углекислоты – это карбонизация, она защищает бетон от коррозии, но провоцирует коррозию в арматуре.
Защита арматуры в бетоне
Существует 3 вида защиты арматуры в бетонном монолите от коррозии: создание оптимальной среды вокруг металла за счет введения в бетон специального ингибитора, улучшение характеристик металла, дополнительная защита арматуры от коррозии (использование пленок, составов и т.д.). Также актуально приготовление качественного раствора с введением пластификаторов, которые уменьшают пористость монолита.
Среда, которая окружает металл – это бетон и для защиты металла от коррозии нужно работать с монолитом. В первую очередь, исключают или минимизируют в составе вещества, вызывающие коррозию – это хлориды, роданиды. Если бетон испытывает постоянное воздействие влаги/воды, его покрывают специальными пропитками – петролатумными, битумными и другими, которые понижают уровень проницаемости камня.
Иногда используется метод омического ограничения – когда влажность бетонного монолита не превышает равновесное значение при показателе относительной влажности воздуха в 60%. В таком случае коррозия арматуры тормозится из-за появления высокого омического сопротивления, которое демонстрируют пленки влаги возле поверхности арматуры. Но метод сложен и не дает эффекта в регионах с частыми осадками и повышенной влажностью.
Качественный бетон изначально должен пассивирующе влиять на арматуру. В среднем бетон полностью сохнет в течение 2-3 лет (чуть быстрее в сухом климате). За это время сильнее разрушается арматура, так как пребывает во влажной среде.
Для защиты осуществляют пассивирование поверхности арматуры и образование защитных оксидных пленок под влиянием щелочной водной среды бетона. Для этого в раствор вводят пассиваторы – примером может выступить нитрит натрия (вводят в объеме 2-3% от массы цемента).
Самым эффективным на сегодняшний день считается использование мигрирующих ингибиторов коррозии, которые можно добавлять в жидкий или твердый бетон. Ингибиторы проходят через трещины в бетоне и поры до металлической поверхности, впитываются в металл, создавая защитный мономолекулярный слой. Так тормозятся процессы коррозии, перекрывается к металлу доступ влаги и воздуха.
Ингибиторы замедляют процесс появления ржавчины в среднем в 5-13 раз. Если использовать средство до начала процесса корродирования, время до запуска окисления металла увеличивается в 2-3 раза.
Чтобы использовать ингибиторы, поверхность нужно очистить от грязи и масла, грибка и асфальта, грунтовок и других составов. Потом ингибитор наносят малярным валиком либо с применением пульверизатора. Обычно выполняют в 2 этапа с промежутком по времени (около 8 часов).
Защита бетона
Чтобы получить оптимальный результат, желательно одновременно использовать разные виды защиты бетона. На этапе создания проекта определяются опасные для бетона факторы, рассматриваются мероприятия по профилактике и защите монолита.
Профилактическая защита бетона предполагает герметизацию конструкции, исключение агрессивных сред, улучшение вентиляции в закрытых помещениях. Важно уделить внимание и правильному конструированию – все поверхности должны быть выполнены так, чтобы иметь возможность предотвратить места скопления воды, другой органики. От цементного камня должен осуществляться нормальный водоотвод (реализуют методом создания водоотводов и поверхностей с углом).
Есть два типа защиты бетона: первичная и вторичная. Первичная защита от коррозии предполагает применение разного типа минеральных добавок в бетон, повышающих его плотность. Метод эффективен, но при слишком большой концентрации добавок можно ухудшить характеристики бетона. Используются добавки для повышения разных свойств монолита – стабилизирующие, влагоудерживающие, пластифицирующие.
Благодаря химическим добавкам увеличивается плотность бетона, что не дает проникать вовнутрь структуры агрессивным средам и даже защищает арматуру. Химические добавки закрывают поры камня, повышая морозостойкость.
- противоморозные;
- воздухозахватывающие;
- пластификаторы;
- повышающие водонепроницаемость;
- антикоррозийные вещества для арматуры;
- замедлители схватывания.
Часто применяют добавки комплексного воздействия, которые одновременно меняют несколько свойств. В некоторых случаях при улучшении одних характеристик вещества ухудшают другие (менее важные).
Вторичная защита бетона от коррозии предполагает использование разных покрытий, которые не позволяют воздействовать на поверхность монолита опасным средам и веществам. Чаще всего применяют лакокрасочные смеси, обеспечивают дополнительную гидроизоляцию, долго выдерживают бетон на воздухе (до карбонизации).
Специальные краски, акриловые покрытия, лаки не позволяют попадать на бетон твердым и газообразным компонентам, способным вызвать коррозию. Такие покрытия защищают камень от влаги и противодействуют такому неприятному фактору, как биологическая коррозия бетона (воздействие микроорганизмов). Применяются разные мастики, создающие защитный барьер. Наиболее эффективными считаются смеси на базе смол.
Актуальны уплотняющие пропитки, которые могут использоваться в качестве основы перед нанесением лакокрасочных покрытий. Такие составы не позволяют воздействовать на бетон газам, влаге. Биоцидные добавки защищают от бактерий, грибков, плесени. Внутри пор материала составы не позволяют развиваться бактериям.
Коррозия бетона и арматуры в конструкциях – актуальная проблема, которая значительно ухудшает эксплуатационные характеристики и сокращает срок службы. Для наиболее эффективной защиты бетонного монолита и стальных каркасов внутри лучше всего использовать несколько методов.